
Canonical solution of the state labelling problem for SU(n) ⊃ SO(n) and Littlewood's branching

rule. III. SU(3) ⊃ SO(3) case

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 791

(http://iopscience.iop.org/0305-4470/17/4/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 791-799. Printed in Great Britain 

Canonical solution of the state labelling problem for 
SU( n) 3 SO( n) and Littlewood’s branching rule: 111. 
SU(3) 2 SO(3) case 

C Quesne? 
Service de Physique Theorique et Mathematique CP 229, Universitk Libre de Bruxelles, 
Bd du Triomphe, B 1050 Brussels, Belgium 

Received 29 June 1983 

Abstract. The first two papers in the present series discussed in general terms a new 
solution to the state labelling problem for the d-row irreducible representations (irreps) 
of SU( n ) ,  when reduced with respect to SO( n). This solution was termed canonical because 
it reflects the operation of Littlewood’s branching rule for U( n )  3 O( n) in a straightforward 
way. In the present paper, the SU(3) zSO(3)  case is worked out in detail. Explicit 
expressions of the canonical basis states of SO(3) irreps L belonging to an SU(3) irrep 
[ h l h 2 ]  are obtained. The matrix of the transformation from the Bargmann-Moshinsky 
basis to the canonical one is also calculated. It is shown that in both bases the extra label 
necessary to completely specify the states can be chosen as the label j, characterising an 
‘intermediate’ SU(2) irrep in the reduction of the product representation jr  x j ,  into SU(2) 
irreps j ,  where j = i ( h ,  - h2) and jr =iL or +( L - 1) whenever h, + h, - L is even or odd. 

1. Introduction 

The purpose of this series of papers is to present a new solution to the state labelling 
problem for the d-row irreducible representations (irreps) of SU( n), when reduced 
with respect to SO(n). The first two papers (henceforth referred to as I and I1 and 
whose equations will be subsequently quoted by their number preceded by I or 11) 
respectively dealt with the cases where n is arbitrary and d S [in] (Deenen and Quesne 
1983) or d > [4n] (Quesne 1984). In these papers, the proposed solution was termed 
canonical because it reflects in a straightforward way the reduction of the internal 
state labelling problem for U( n) 3 O( n) to the external state labelling problem for 
U( d), as expressed in Littlewood’s branching rule (1950). 

Papers I and I1 were concerned with some general structural results for the basis 
states of O(n) irreps belonging to a given U(n) irrep, but did not give any of their 
explicit expressions. With the present paper, we would like to fill in this gap. Since 
the basis states involve some U( d) Wigner (and sometimes also recoupling) coefficients, 
for practical purposes we have to restrict ourselves to cases where the U(d) Wigner- 
Racah algebra is known. Therefore we consider the case of SU(3), for which the 
general irreps are two-row ones and only require the knowledge of ordinary SU(2) 
Wigner coefficients. 

Our purpose is twofold: firstly to show that the canonical solution is ns tractable 
as other solutions to the state labelling problem while having a deeper group-theoretical 
t Maitre de recherches FNRS. 
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significance; secondly to relate the canonical basis to other ones, especially to the 
Bargmann-Moshinsky basis (1961), also based upon Littlewood's branching rule 
through the use of the elementary permissible diagram method (Moshinsky and Syamala 
Devi 1969, Sharp and Lam 1969). 

In 0 2, we derive an explicit expression for the canonical basis states of the irreps 
L of SO(3) contained in a given irrep [ h l h 2 ]  of SU(3). In 0 3, we rewrite the 
Bargmann-Moshinsky basis in Bargmann representation (1961) in terms of the same 
variables used for the canonical basis. Finally in 0 4, we obtain the matrix of the 
transformation relating the Bargmann-Moshinsky basis to the canonical one. 

2. Canonical basis for SU(3) 3 SO(3) 

In Bargmann representation, the SU(3) generators can be written as 

2 a  

i = l  az, 
cs, = c zis-9 s , t = l , 2 , 3 ,  

in terms of six complex variables zis, i = 1,2 ,  s = 1,2 ,3 ,  and the corresponding differen- 
tial operators a/&?,. The SO( 3) subgroup generators in spherical components are 
defined by 

L1 =c ( ac, biL-ci">. aai 

(2.2) 

a, = 2-l/*( tl1 - iz12), b, = 2-1'2(2,1 +iz,,), ci = 2 1 3 ,  (2.3) 

where a,, b,, c, are given by 

in accordance with equation (13.1), where the cy index that can only take the value 1 
is suppressed. 

Definition (2.2) is the standard one for SO(3) and consistent with that used by 
Bargmann and Moshinsky (1961). It differs however from Wong's convention for 
S O ( n )  (1967), as adopted in I and 11, by a sign change in the weight generator (HI 
in equation (113.3) becoming -Lo), and the resulting interchange of the raising and 
lowering generators ( E :  in equation (113.3) becoming -L-l) .  These modifications 
can easily be taken into account by permuting a, with b, in all the results of I and 11. 
For instance, the change of variables (113.5) becomes 
U, = b,, i = 1,2 ,  u = c 1 ,  w,, = w,, = a, b, + a, b, + c,c,, l ~ i < j < 2  

According to Littlewood's modified branching rule given in equation (112.3), the 
(2.4) 

multiplicity of the SO(3) irrep L in the SU(3) irrep [h1h2]  is equal to 

whenever h ,  + h2 - L is even or odd respectively. Here gpur denotes the multiplicity 
of the irrep 7 of U(3) in the product representation p X IT, and the summation over 
hi,  h i  is restricted to even integers. In 0 4 of I1 it was shown that the highest weight 
states (HWS) of the equivalent SO(3) irreps L contained in [h1h2] can be distinguished 
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by the pattern 

where h;,  hi retain the same meaning as in equation (2 .3 ,  

y s  = h1- L, (2.7) 
and 

hf + hi- y s  = h2 if h,  + h2 - L is even, 

= hz- 1 if h l+h2-L is odd. (2.8) 

Due to equations (2.7) and (2.8), (r’) only contains one free label which we choose 
as the integer 

j , = t ( h i  - h i ) ,  (2.9) 

specifying the SU(2) irrep corresponding to the U(2) irrep [hih;]. In analogy with 
equation (2.9), we introduce the following notations 

J = t ( h ,  - h2), 

and 

j L  = $L if hl + h2 - L is even, 

if hl + h2 - L is odd. = i ( L - l )  

(2.10) 

(2.11) 

Since the extra label Js characterises an ‘intermediate’ SU(2) irrep in the reduction 
of the product representation j L  X J, into SU(2) irreps j ,  its allowed values are limited 
by the usual triangular inequalities (Edmonds 1957). Additional restrictions come 
from equations (2.7) and (2.8), and the parity of hf, hi. By putting them together, 
we obtain that the allowed j ,  values satisfy the following two conditions 

J, has the parity of [f( hl + h, - L)], 

l i  - iL.I =S is min{i + jL ,  I t (  hl + hz - LIB, 

(2.12a) 

(2.12 b )  

where [$( hl + h2 - L)]  denotes the largest integer contained in t( hl  + hz- L) .  

according to equation (114.1) is given by 
When hl + h2 - L is even, the HWS is an analytic function in ui and wi,, which 

=(ui,  wiiI[hlh2] max; ( L )  max; (rs)) 

(2.13) 

where the first factor on the right-hand side is an SU(2) Wigner coefficient, and 

hs = hi + hi = h1+ h2 - L. (2.14) 

When h,+h,-L is odd, equations (114.5), (114.6), and (114.7) show that the HWS can 
be written as 

(ui, w i j I [ h l h ~ l J s L ) = ( b ~ c ~ - b ~ C l ) ( ~ i ,  WijI[hl-l, h2-1IJsL-1)9 (2.15) 
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where on the right-hand side the first factor satisfies the following relation 

( b 1 ~ 2 -  b2~1)’ = U ~ W ,  1 - 2 ~ 1  u ~ w I ~ +  U: ~ 2 2 ,  (2.16) 

and the second factor is given by an expression similar to equation (2.13) with hl ,  h2, 
and L respectively replaced by h, - 1, h2 - 1,  and L - 1.  

It remains for explicit expressions to be found for the polynomials in ui or wi, 
appearing on the right-hand side of equation (2.13) and respectively associated with 
the irreps [L] (L)  and [i h, +is, 4 h, - j , ] ( O ) .  The polynomial in ui is just the Bargmann 
representation of a Gel’fand basis state (Gel’fand and Tseitlin 1950) for the U(2) irrep 
[2jL] built from two boson creation operators, and is given by 

According to equation (I4.4), the polynomial in w!, corresponding to m, = j ,  is given, 
apart from some normalisation coefficient, by 

(w,l[$hS+js, $h,-j,]$h,+j,; ( O ) m a x ) ~ ( ~ ~ ~ ) ’ ~ ( w ~ ~ , ~ ~ ) ‘ ~ ~ ~ ~ ~ ’ ~ ’ ~ ~  , (2.18) 
where 

w12,12 = w11 w22 - d 2 .  (2.19) 

For the remaining m, values, it can be determined from the relation 

(wl,I[4h,+js, ih,-js14h,+ m,; (Ohax)  
=[(is+ m,)!]1’2[ ( jS-  m,)! (2js)!]-1’2 

x (C,1)’s-”~(wt,I[4h, + js ,  4hs - j , ]Jh ,  +is; (Olmax), (2.20) 

where, according to equation (14.1), Czl reduces to 

c21= 2w12 a / a w , ,  + w22 a / w z ,  (2.21) 

when acting upon a function of the wl, variables. It is straightforward to show by 
induction over m, that 

(wl,I[ih, +is, ih, -j,14h, + m,; (Olmax) 

apart from some m, independent normalisation coefficient. In equation (2.22), the 
summation over /I goes over all integers for which the arguments of the factorials are 
non-negative. 

Let us introduce equations (2.17) and (2.22) into equation (2.13). By taking into 
account that (Edmonds 1957) 

( j~ j -m, , j ,m, I j j )a( - l ) j~- j+~,[ ( j+j~-  m , ) ! ( j S + m , ) ! ] 1 ’ 2 [ ( ~ r - j + m , ) !  (is- m ~ ! ] - ” ~ ,  

where we have neglected all m, independent factors, we obtain the following result 

(2.23) 
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(ui, wijkhlh2IjJ) 

= ( W12,12)(hs/2-1,) /2  C ( - 1 ) j ~ - j + ~ ~ ( j ~  + ms)! 
mrlr 

x [ ( j L - j +  ms)!  ( m s + p ) !  ( j s -  m, - 2 p ) !  p ! ] - l  

x (ul)jL+j-m.( U2)jr-i+ms( W l l ) m , + ~ ( 2 w  12 )jl-ms-21r (w22)lr.  (2.24) 

In equation (2.24), we have chosen the normalisation in a convenient way for sub- 
sequent purposes. As a consequence of this choice, the HWS are not normalised to 
unity. This is unimportant since in any case they are not orthogonal with respect to js. 

Having derived an explicit expression for the canonical HWS, let us turn to the 
Bargmann-Moshinsky HWS and rewrite them in Bargmann representation in the next 
section. 

3. Bargmann-Moshinsky basis for SU(3) 2 SO(3) 

In the Bargmann-Moshinsky basis ( 1 9 6 1 ) ,  the HWS of equivalent SO(3) irreps L 
contained in a given SU( 3) irrep [ hl h2] are written as products of powers of polynomials 
corresponding to the HWS of some elementary permissible diagrams (EPD) (Moshinsky 
and Syamala Devi 1969). These EPD are listed in table 1, together with the associated 
polynomials written in terms of boson creation operators in spherical components vim, 
i = 1,2,  m = +1,0 ,  -1,  and their determinants vij,mmr = vimv,,' - v i m ' v j m .  The addi- 
tional label, used to completely specify the HWS of equivalent irreps L, is the power 
q of the polynomial t, associated with the EPD characterised by the irreps [22](0). The 
HWS explicit form is given in terms of the EPD polynomials by 

(3.1) ( v l  l )L-h2+2q(v  1 2 , l O  h2-2qS(h1-L-2q)/2 t 4 10) if h, - L is even, 

and 

if h,  - L is odd, h2-2q- l  (h1 -L-2q-1 ) /2  4 W + ( v 1 1 ) L - h 2 + 2 q  (7712, lO) S t 10) 

where 10) is the boson vacuum state. 
In the Bargmann representation, the Cartesian components T ~ ~ (  i = 1 , 2 ,  s = 1 , 2 , 3 )  

of boson creation operators are represented by zis, and their spherical components 

Table 1. Polynomials associated with the EPD HWS and the Bargmann representation of 
the latter. 

[hlhZlL Polynomials Bargmann representation 
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T , + I ,  v , ~ ,  v,-,(i= 1,2)  by -bl, c,, a, ( i  = 1,2)  respectively. It is thereforestraightforward 
to write the Bargmann representation of the HWS (3.1) in terms of the variables a,, 
b,, and c,. To express them in terms of the variables U, and wl,, we might invert the 
transformation (2.4). It is however easier to directly apply results of 0 2 to the HWS 

of the EPD. Since for the latter the irrep L is contained only once in the irrep [ h l h 2 ] ,  
their HWS must coincide in the canonical and in the Bargmann-Moshinsky basis, except 
for some normalisation factor which is easily found by direct substitution of definition 
(2.4) for U, and w,,. In this way we obtain the expressions listed in the third column 
of table 1. For the HWS of the EPD associated with the irreps [ l ’ ]  ( l ) ,  which is 
non-analytic in U, and w,,, we retain the old expression in terms of the a,, b,, c, variables. 

Since in the next section we shall determine the transformation from the Bargmann- 
Moshinsky basis to the canonical one, it is worth asking whether a simple relation 
exists between the extra labels q and j s  used in either basis. From the definition of q 
(Moshinsky and Syamala Devi 1969), it is clear that it is linked to the ‘intermediate’ 
irrep [hf  h i ]  used in Littlewood’s modified branching rule by the relation 

hi =2q. (3.2) 
Equations (2.7),  (2.8), and (2.9) enable us to express h; in terms of h,, h2, L ,  and js. 
The desired relation between q and j s  is therefore given by 

j s  = [&( hl  + hZ-~) ] -2q .  (3.3) 

For subsequent purposes, it is advantageous to characterise the Bargmann-Mosh- 
insky HWS by js  instead of q. We shall denote their Bargmann representation by 
(U,, w,,([h,h,]j,L), where we use a round bracket to distinguish it from that of the 
canonical HWS. When h ,  + h2- L is even, it can be written as 

( 4 9  w,,I[h,h2ljsL) 
= ( -u l ) J+/L-!q  w l * ) ( J + / s - l L ) / 2  (2 w12 ,12)  ( h P - N Z  

= ( U 2 W , , -  ~ , W l 2 ) ( - ~ ] ) ~ + ~ L - ~ ~ (  w l l ) ( ~ + L - k - l ) ~ 2  (2 w12,12)(h’/2-”)/2 

x ( U ;  w22 - 2 U1 U 2  w12 + U: w11) (’L+’9-’)’2 if hl  - L is even, (3.4a) 

x (U: w22- 2u,u2 W 1 2 +  U: w,,)(’L+’s-’-1)’2 if h , - L  is odd, (3.46) 
and when hl + h2-  L is odd as 

(U,, ~ , , I [ h l h 2 I j ~ ~ )  = - ( b 1 ~ 2 -  b 2 ~ 1 ) ( ~ , ,  w,,I[hl - 1 ,  h2-  I I ~ , L -  I), (3.5) 
where the second factor on the right-hand side is given by an expression similar to 
equation (3.4) with hl ,  h2, and L respectively replaced by h,  - 1, h2-  1 ,  and L -  1. 

4. Transformation from the Bargmann-Moshinsky basis to the canonical one 

In this section, we wish to determine the expansion 

(ui, Wi,J[hl h 2 I j ~ )  =C ([h,h,Ij :~l[h,h2Ij ,~)(ui,  wijJ[hl h 2 W )  (4.1) 

of the canonical HWS, defined in equations (2.24) and (2.15), in terms of the Bargmann- 
Moshinsky HWS, given in equations (3.4) and (3.5). For such purpose, we have to 
distinguish between eight cases, according to whether hl  + h2 - L and h, - L are even 

I”  
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or odd, and j 2 j L  or j < jL .  Since they only differ by small details, we shall derive the 
expansion in one case and then state the general result. 

Let us assume that both hl + h2 - L and hl  - L are even and j 2 jL. Then equation 
(2.12) shows that the allowed values of j ,  and j :  are 

(4.2) 

(4.3) 

j s  = j -  jL+2a, 

a, b = 0 ,  I ,  . . . , min([jL], &,). 

j :  -- j - j L  + 2 b, 
where 

Equation (4.1) can be rewritten as 

( ui, wij([hlh2]j- j L  + 2aL) = AV'( ui, wijl[hlh2]j- j L  + 2bL), (4.4) 
b 

where AV ' denotes the coefficients to be determined. 

j -  jL + p, we obtain the following equation 
By introducing equations (2.24) and ( 3 . 4 ~ )  into equation (4.4) and setting m, = 

( w12,12) (hJ2-j+jL)/2-o c (- 1)P( 2 j  - 2jL + 2a  + p ) !  
IrP 

x [ p !  p !  ( j -  j L  + p + p ) !  (2a - 2 p  - p)! ] - '  

x ( ul)2jL-p(u2)p( w l l ) j - j L + ~ + ~ ( 2 w 1 2 ) 2 ~ - 2 w - ~  (W22Y 

where the summations over p and p go over all integers for which the factorial 
arguments are non-negative. We note that the left-hand side of this equation is a 
(2a)-degree polynomial in u2, while on the right-hand side the term corresponding 
to a given b value is a (2b)-degree polynomial in u2. Hence 

if b > a, (4.6) AV' = 0 

showing that in equation (4.1) j :  is restricted to those values such that j :  d js The 
matrix of the transformation from the Bargmann-Moshinsky basis to the canonical 
one is therefore triangular. 

By expanding the right-hand side of equation (4.5) into powers of ul, u2, wI1, w12, 
w22, and equating the coefficients of equal powers on both sides, we obtain the following 
set of equations for the a + 1 unknowns AV', b = 0 ,1 , .  , . , a, 

The number of such equations, equal to the number of p and p values in the range 
0 d p d 2a, 0 d p S [ a  -&Iy exceeds the number a + 1 of unknowns and may therefore 
be reduced with the purpose of easing the determination of Ab"). 
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Let us sum over p on both sides of equation (4.7) and use the identities (Edmonds 
1957) 

(--lY(b-- a)! [ n !  ( b  - (T- n)!]-’ = srr,b, 
fl 

(4.8) 

and 

(-1y( t - s)! [s! ( x  - s)! ( 2  - s)!]-’ 
S 

= ( t -  x ) !  ( t  - z ) ! [ x !  z !  ( t  - x - 2 y - l  if t 3 x 3 O a n d t 3 z 2 0 ,  (4.9) 

where n = p + w - b ,  s = 2 a - 2 p - p ,  t=2z=2 j -2 jL+4a-2p ,  and x = 2 a - 2 p .  Sys- 
tem (4.7) is transformed into the following set of relations 

f A p ’ ( a  - 6)![2’(p - b)!]-’ 
b = O  

= (-1)L+a+w 2 -  ( 4h ,+ i - jL ) /2+2n-2~  

x (2j-2jL+2a)!  ( a - p ) ! [ p !  (2a -2p) !  ( j -  jL+p)!]-’. (4.10) 

The number of such equations equals that of p values in the range OS p 6 a, i.e., 
a + 1. We have therefore obtained a system of a + 1 linear equations in a + 1 unknowns. 
It is straightforward to show by direct substitution that its solution is given by 

AV) = ( -1)L+4-’2( -h~/2+i- i , ) /2+4 (2 j  - 2jL + 2a)! ! (2j  - 2jL + 2a + 2 b - 1 ) ! ! 

x [(2a - I)! ! b! (a - b)!  ( j -  j L  + b )  !I-’. (4.11) 

For such a purpose, we have to use the identity? 

E(-l)P(21+ 2p - l)!! [( 2p)!! ( q  - p)! ( k - q + p ) ! ] - ’  
P 

=(-1)‘(2f- 1)!!(2f -2k+2q-  l)!! 

x [ k ! ( 2 q ) ! !  (21-2k-l)!!]-’, k,  I ,  q integer, k s  1, (4.12) 

with the following identifications k = j - j L  + p, 1 = j -  j L  + a, p = b, and q = p. 
To obtain the matrix of the transformation from the Bargmann-Moshinsky basis 

to the canonical one, it only remains to express a and b in equation (4.11) in terms 
of j s  and j :  by using equation (4.2). The general result, valid for any values of hl,  h2, 
and L, is given by 

(Ehl h1jbXh h21j&) 

{[(i+is -L)/211! { [ ( j L + j s  --j)/211! = (-1 )L+(js-j>/2 2(-hs/2+3J,)/2 

x (is +i: - U!! U(jL +is -j)! {[(i+i: -jL)/211! U ( j L  +i: --j)/W 
x { ( i S  -j1)/21!lK1 if i: = ( j s lmin,  ( j s lmin + 2, . 9 j s ,  

= O  otherwise. (4.13) 

t Equation (4.12) is proved by expanding the identity 

( l+x)k( l+x)- ’ -1’2=( l+x)- ( ’ -k1-1’* ,  k, [integer, k G 1 ,  

into powers of x and by equating the coefficients of equal powers on both sides. 
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Here [ x ]  denotes the largest integer contained in x, j and jL are defined in equations 
(2.10) and (2.11) respectively, h, and 

(4.14) 

are given by 

h, = 2[$( hl + h2 - L ) ] ,  
and 

( i s ) m i n = l i - i L I  if hl - L is even, 

if h,  - L is odd. =lj-jJ+l (4.15) 

It is interesting to note that since the relations of the Bargmann-Moshinsky basis 
to the remaining known SU(3) = SO(3) basis have been discussed in the review of 
Moshinsky et a1 (1975), one only has to combine them with the results of the present 
paper to obtain the transformations from all known SU(3) =SO(3) bases to the 
canonical one. 

Note added in proof. The right-hand side of (2.22) is proportional to ( w  ~ ) ' ~ ~ ' ' - ' ~ ' ' ~ 9  ,,,,,,(w), where 9j,,,,, 
denotes a solid harmonic, Knd w is a vector whose spherical components are defined by w , ~  = wll/Jz, 
w,= w12,  and w - ~  = w,,/J2. 
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